

Mr. Wright's Math Extravaganza

Precalculus

Exponential and Logarithmic Functions

Level 2.0: 70% on test, Level 3.0: 80% on test, Level 4.0: level 3.0 and success on applications Score I Can Statements

4.0	□ I can demonstrate in-depth inferences and applications that go beyond what was taught.						
3.5	In addition to score 3.0 performance, partial success at score 4.0 content.						
2.0	I can solve exponential functions.						
3.0	I can solve logarithmic functions.						
2.5	No major errors or omissions regarding score 2.0 content, and partial success at score 3.0 content.						
	I can evaluate and graph exponential functions.						
	I can evaluate and graph logarithmic functions.						
2.0	I can expand and condense logarithmic expressions.						
	I can evaluate logarithmic expression using the change-of-base formula.						
	I can solve problems using models containing exponential and logarithmic expressions.						
1.5	Partial success at score 2.0 content, and major errors or omissions regarding score 3.0 content.						
1.0	With help, partial success at score 2.0 content and score 3.0 content.						
0.5	With help, partial success at score 2.0 content but not at score 3.0 content.						
0.0	Even with help, no success.						

3-01 Exponential Functions

- _____ if a < 0
- Horizontal Asymptote: _____ .
- *y*-int: ______ if *h* = 0 •

Graph by making a table

Exponential functions are _____

Each x gives a _____ y

Solve $16 = 2^{x+2}$

Solve $\left(\frac{1}{3}\right)^x = 81$

Natural Base

•
$$e = \left(1 + \frac{1}{n}\right)^n$$
 when $n \to \infty$

Compound Interest

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

A = current amount

P = principle (initial amount)

r = yearly interest rate (APR)

n = number of compoundings per year

t = years

Compounded Continuously

 $A = Pe^{rt}$

3-02 Logarithmic Functions

	$f(x) = \log_b x$	
• "log base <i>b</i> of <i>x</i> "		
Logarithms are	offunctions	
T 1.1	$y = \log_b x \leftrightarrow x = b^y$	
Logarithms are	!	
Evaluate		
Think "What	of the base gives the big number?"	
log ₅ 125	$\log_2 \frac{1}{64}$	
]
Calculator		
• LOG →	$\rightarrow \log$	
• LN →	\longrightarrow ln	
Use your calculator to evaluate l	og 300	
Properties of Logarithms		
• $\log_b 1 = 0$		
• $\log_b b = 1$		
• $\log_b b^x = x$		
• If $\log_b x = \log_b y$, then :	= y	1
Simplify log ₅ 1	log _e e	
8 ^{log₈ 30}		
Solve $\log_3(x^2 + 4) = \log_3 29$		

3-03 Properties of Logarithms

Properties of Logarithms Product Property: $\log_b(uv) = \log_b u + \log_b v$ • Quotient Property: $\log_b \left(\frac{u}{v}\right) = \log_b u - \log_b v$ • Power Property: $\log_b u^n = n \log_b u$ Write each log in terms of ln 2 and ln 5. $\ln \frac{5}{32}$ ln 10

Expand $\ln \frac{\sqrt{4x+1}}{8}$

Condense		
$\frac{1}{3}\log x + 5\log(x-3)$	$4\ln(x-4) - 2\ln x$	
1		
$\frac{1}{5}(\log_3 x + \log_3(x-2))$		
Change of Rose Formula		

Change-of-Base Formula	
$\log_b c = \frac{\log_a c}{\log_a b}$	
Evaluate log ₃ 17	

 $\log 3x^2y$

Precalculus 3-03

3. Use _____ formula

$$\log_b x = \frac{\log x}{\log b}$$

 Or use the ______function on some TI graphing calcs MATH → logBASE

Graph $y = \log_2(x+1)$	

			,			

3-04 Solving Exponential and Logarithmic Equations

Colum Francisci Franciscum						
Solve Exponential Equations						
Shortcut Method						
1-to-1 method (rewrite with the same base)						
$\left(\frac{1}{r}\right)^{x} = 125$						
General Method						
of both sides						
$5 - 3e^x = 2$	$6(2^{t+5}) + 4 = 11$					
$e^{2x} - 7e^x + 12 = 0$						
Localithusis Fauntiens						
Shortcut Method	Shortcut Method					
1-to-1 Property						

 $\ln x - \ln 3 = 0$

Precalculus 3-04	Name:
General Method	
both sides	
$6 + 3\ln x = 4 \qquad \qquad \log_4 x + \log_4(x)$	(z-9) = 1
Graphical method	
If the other methods don't apply	
• Make	
• Find the	
Solve $\log_2 x = \ln 2x$	
│ < 	

3-05 Exponential and Logarithmic Models

Logistic Growth Model

- Used for _____
- $y = \frac{a}{1+be^{-rx}}$

Logarithmic Models

- $y = a + b \ln x$
- $y = a + b \log x$
- Richter Scale
 - o _____magnitude
 - Decibels

•

o _____of sound

Name: _____